Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14220, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987790

RESUMO

The objectives of this study were to determine the emission of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2), as well as the isotopic composition of N2O from excreta of beef steers fed 'AU Grazer' sericea lespedeza hay [SL; Lespedeza cuneata (Dum. Cours.) G. Don]. Fifteen Brahman × Angus crossbred steers were fed one of three experimental diets: 0, 50, or 100% inclusion of SL into 'Tifton 85' bermudagrass hay (Cynodon spp.). Gas sampling occurred on days 0, 1, 3, 5, 7, 14, 18, 25, and 32 after urine or feces application to static chambers for two experimental periods. Effect of the day after feces application (P < 0.001), while day × inclusion of SL interaction was observed in urine (P < 0.001) for all greenhouse gases (GHG) analyzed. Peaks of emission of all GHG in urine and feces occurred in the first days (P < 0.001), with days 3 and 5 being most depleted in 15N-N2O in feces, and days 3, 5, and 7, in urine (P < 0.001). Feeding SL to beef steers was effective in mitigating the emission of GHG from the excreta, but further research is necessary to investigate the mechanisms behind the reductions.


Assuntos
Fabaceae , Gases de Efeito Estufa , Lespedeza , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Metano , Óxido Nitroso , Taninos , Verduras
2.
Sci Rep ; 12(1): 14318, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35996007

RESUMO

The objective of Trial 1 was to determine the effects of condensed tannins (CT) from sericea lespedeza [SL; Lespedeza cuneata (Dum. Cours.) G. Don] on in vitro digestible organic matter (IVDOM), total gas production (GP), methane (CH4) emission, and ruminal fluid parameters after fermentation. Substrates used in four 48-h in vitro fermentations were 100% bermudagrass [(Cynodon dactylon (L.) Pers.] hay (0SL), 100% SL hay (100SL), and a mix of both hays (50SL). Linear reductions were observed for all parameters (P < 0.05) with the inclusion of SL, except for CH4 in relation to GP, that presented a quadratic effect (P = 0.005). In Trial 2, SL plants were enriched with 13C-CO2 to obtain pure enriched CT to identify the destination of fermentation end products of CT degradation. The enrichment of CT through the SL was successful (P < 0.001), and carbon originated from CT was detected in the fermentation end products [microbial mass, clarified rumen fluid, and in the CH4 produced (P < 0.001)]. Therefore, inclusion of SL was effective in reducing in vitro CH4 production and compound-specific tracing of δ13C abundance provided better quantitative understanding of the mechanisms of partitioning CT during ruminal fermentation processes.


Assuntos
Lespedeza , Proantocianidinas , Ração Animal/análise , Animais , Dieta , Fermentação , Cabras/metabolismo , Isótopos/metabolismo , Metano/metabolismo , Proantocianidinas/farmacologia , Rúmen/metabolismo
3.
J Anim Sci ; 99(8)2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333648

RESUMO

An experiment was conducted to evaluate the effects of different proportions of 'Au Grazer' sericea lespedeza [SL, Lespedeza cuneata (Dum. Cours.) G. Don], a legume rich in condensed tannins (CT), on nutrient intake and digestibility, and to estimate methane (CH4) emissions and 13C isotopic composition (δ13CCH4) from beef steers consuming a forage-based diet. Twenty-five Angus-crossbred steers were distributed in a randomized complete block design (344 ± 48 kg initial BW), and randomly assigned to one of five treatments: 0SL, 25SL, 50SL, 75SL, and 100SL, diets containing 0%, 25%, 50%, 75%, and 100% of SL hay, respectively, mixed with 'Tifton-85' bermudagrass hay (Cynodon spp.). The study was carried out for two experimental periods of 21-d each. The statistical model included the fixed effect of treatment and random effects of block, experimental period, and their interaction. Apparent total tract digestibility of crude protein, neutral detergent fiber, and acid detergent fiber was linearly decreased (P < 0.001) by the inclusion of SL. No effects were observed for total CH4 emissions per day, nor for CH4 relative to organic matter intake or digestible organic matter with the inclusion of SL. However, emission of CH4 in relation to intake of CT was affected by treatment (P < 0.001). A linear (P < 0.001) decrease and a quadratic effect (P < 0.001) were observed for δ13C of diets and gas, respectively, in which diets and enteric CH4 with greater inclusion of SL were more depleted in 13C. Moreover, the difference in δ13C between diets and gas (Δδ13C) had a linear decrease (P = 0.001) with the inclusion of SL. The model developed to predict the C3 proportions in the enteric CH4 fitted to predicted values (P < 0.0001). Therefore, greater proportions of SL resulted in lesser CH4 emission when CT intake was considered and the isotopic composition from enteric CH4 was able to predict the contribution of SL in the emissions.


Assuntos
Lespedeza , Ração Animal/análise , Animais , Bovinos , Cynodon , Dieta/veterinária , Digestão , Metano , Rúmen
4.
Front Vet Sci ; 8: 628445, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748210

RESUMO

This review provides an update of ecologically relevant phytochemicals for ruminant production, focusing on their contribution to advancing nutrition. Phytochemicals embody a broad spectrum of chemical components that influence resource competence and biological advantage in determining plant species' distribution and density in different ecosystems. These natural compounds also often act as plant defensive chemicals against predatorial microbes, insects, and herbivores. They may modulate or exacerbate microbial transactions in the gastrointestinal tract and physiological responses in ruminant microbiomes. To harness their production-enhancing characteristics, phytochemicals have been actively researched as feed additives to manipulate ruminal fermentation and establish other phytochemoprophylactic (prevent animal diseases) and phytochemotherapeutic (treat animal diseases) roles. However, phytochemical-host interactions, the exact mechanism of action, and their effects require more profound elucidation to provide definitive recommendations for ruminant production. The majority of phytochemicals of nutritional and pharmacological interest are typically classified as flavonoids (9%), terpenoids (55%), and alkaloids (36%). Within flavonoids, polyphenolics (e.g., hydrolyzable and condensed tannins) have many benefits to ruminants, including reducing methane (CH4) emission, gastrointestinal nematode parasitism, and ruminal proteolysis. Within terpenoids, saponins and essential oils also mitigate CH4 emission, but triterpenoid saponins have rich biochemical structures with many clinical benefits in humans. The anti-methanogenic property in ruminants is variable because of the simultaneous targeting of several physiological pathways. This may explain saponin-containing forages' relative safety for long-term use and describe associated molecular interactions on all ruminant metabolism phases. Alkaloids are N-containing compounds with vast pharmacological properties currently used to treat humans, but their phytochemical usage as feed additives in ruminants has yet to be exploited as they may act as ghost compounds alongside other phytochemicals of known importance. We discussed strategic recommendations for phytochemicals to support sustainable ruminant production, such as replacements for antibiotics and anthelmintics. Topics that merit further examination are discussed and include the role of fresh forages vis-à-vis processed feeds in confined ruminant operations. Applications and benefits of phytochemicals to humankind are yet to be fully understood or utilized. Scientific explorations have provided promising results, pending thorough vetting before primetime use, such that academic and commercial interests in the technology are fully adopted.

5.
J Anim Sci ; 98(7)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32674157

RESUMO

Achieving high animal productivity without degrading the environment is the primary target in pasture-based dairy farming. This study investigated the effects of changing the forage base in spring from grass-clover pastures to forb or legume-based pastures on milk yield, N utilization, and methane emissions of Jersey cows in Western Oregon. Twenty-seven mid-lactation dairy cows were randomly assigned to one of three pasture treatments: grass-clover-based pasture composed of festulolium, tall fescue, orchardgrass, and white clover (Grass); forb-based pasture composed of chicory, plantain, and white clover (Forb); and legume-based pasture composed of red clover, bird's-foot trefoil, berseem clover, and balansa clover (Legume). Pastures were arranged in a randomized complete block design with three replicates (i.e., blocks) with each replicate grazed by a group of three cows. Production and nutritive quality of the forages, animal performance, milk components, nitrogen partitioning, and methane emissions were measured. Feed quality and dry matter intake (DMI) of cows were greater (P ≤ 0.05) for Legume and Forb vs. Grass, with consequent greater milk and milk solids yields (P < 0.01). Cows grazing Forb also had more (P < 0.01) lactose and linoleic acid in milk compared with cows grazing the other pastures, and less (P = 0.04) somatic cell counts compared with Grass. Cows grazing Forb had substantially less (P < 0.01) N in urine, milk, and blood compared with cows grazing the other pastures, with not only a greater (P < 0.01) efficiency of N utilization for milk synthesis calculated using milk urea nitrogen but also a larger (P < 0.01) fecal N content, indicating a shift of N from urine to feces. Both Forb and Legume had a diuretic effect on cows, as indicated by the lower (P < 0.01) creatinine concentration in urine compared with Grass. Methane emissions tended to be less (P = 0.07) in cows grazed on Forb vs. the other pastures. The results indicate that Forb pasture can support animal performance, milk quality, and health comparable to Legume pasture; however, Forb pasture provides the additional benefit of reduced environmental impact of pasture-based dairy production.


Assuntos
Bovinos/fisiologia , Cichorium intybus , Lactação/fisiologia , Medicago , Metano/biossíntese , Poaceae , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Nitrogênio da Ureia Sanguínea , Bovinos/metabolismo , Dieta/veterinária , Fezes , Feminino , Leite/fisiologia , Nitrogênio , Valor Nutritivo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...